Synthesis of Active Sites for Alkene Metathesis Reaction on Molybdenum and Tungsten Oxide Films ## MAYUMI KAZUTA AND KEN-ICHI TANAKA Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan Received June 13, 1989; revised November 28, 1989 Two methods were developed for the synthesis of active sites for the alkene metathesis reaction on sublimed oxide films (MoO_x and WO_x). One method involves the reaction of the oxide films with alkyl radicals which are themselves produced by reacting condensed alkenes on the films at liquid nitrogen temperature with atomic hydrogen. The other method is the reaction of the oxide films with CH_2 radicals which are produced by the reaction of CH_2I_2 on Al or Mg metals. Both methods were effective for activation of the MoO_x films, yielding catalysts with turnover frequencies as large as $0.6 \ s^{-1}$ (3 Torr propene at room temperature). However, the first method was less effective for the activation of WO_x film. The isomerization and the hydrogen scrambling reactions of alkenes were also studied. © 1990 Academic Press, Inc. ### INTRODUCTION A mechanism involving metal alkylidene and metallacyclobutane, such as shown in the following scheme, is generally accepted in the homogeneous alkene metathesis reaction, $C^*=C^*(+)C=C(-)^*C=C$ (I). If the alkene metathesis reaction on heterogeneous catalysts follows a comparable mechanism, then alkylidene species which are the key intermediates should be produced from alkenes on the surface in the initial stage of the reaction. This initiation process is, however, still a matter of debate. Since the activity of a catalyst depends in general on the number of active sites, the number of alkylidene sites produced by reaction with alkenes determines the activity of the traditional catalyst. The role of supporting oxides is also an interesting problem which should be solved, because the activity of MoO_x for the metathesis reaction depends strongly on the support (2). In this paper, we propose a new idea of synthesis of active sites, in which the sublimed oxide films were subjected to the reaction with alkyl or alkylidene radicals. By means of this newly developed method, new, extraordinarily active catalysts for alkene metathesis reaction were prepared. #### **EXPERIMENTAL** The apparatus used in our experiment is shown in Fig. 1. The volume of a Pyrex glass reactor was about 1000 ml and a base pressure of 10^{-8} – 10^{-9} Torr was achieved. The oxide film (MoO_x or WO_x, $x \approx 3$) was sublimed on the Pyrex reactor wall by flashing a Mo or a W filament (99.95%) in 0.2 Torr of oxygen (99.99%). The thickness of the film was estimated to be about 50 monolayers. After the sublimation of the oxide film, the wall was annealed at 450°C for 30 min *in vacuo*, and then the oxide film was subjected to the synthesis of active sites by the following two methods. ## Formation of Active Sites on Oxide Films by Reacting Alkene with Atomic Hydrogen The oxide film sublimated on the glass wall was partially reduced by treatment with atomic hydrogen at liquid N_2 temperature. That is, the glass tube with the oxide film was dipped in liquid nitrogen and was treated with atomic hydrogen for 5 min by Fig. 1. Deposition and reaction chamber. Fig. 2. Reaction of alkene with atomic hydrogen at liquid N_2 temperature. flashing a Mo or a W filament in 0.3 Torr of hydrogen which had been purified by passage through a Palladium thimble. This treatment is denoted hereafter as "atomic H-treatment." The oxide film was then evacuated for 30 min at 450°C after atomic H-treatment. At this stage we call it a "prereduced" film. After the pre-reduction, 0.01 Torr of alkene (ca. 10^3 ml) was condensed on the oxide film by dipping in liquid nitrogen, and then the oxide film with condensed alkene was treated with atomic hydrogen for 3 min (Fig. 2). After the treatment with H atoms, the reactor was evacuated at room temperature for 10 min. Ethene (99.9%), propene (99.8%), *cis*-2-butene, *trans*-2-butene, and isobutene (99.0%) were adopted as the condensed alkene on the MoO_x film, but the activation of WO_x films was performed only by propene. ## Synthesis of Active Sites on Oxide Films by Using CH₂ Radicals Al (99.99%) or Mg (99.9%) metal was vaporized onto the glass wall adjacent to the oxide film by heating the metal with a Ta | TABLE 1 | |-------------------------------------| | Activities of the Oxide Films after | | Various Treatments | | Activation treatment | Na (s ⁻¹) for alkene metathesis | | Activity for isomerization ^b | |--|---|------------------------|---| | | MoO _x | WO _x | | | (A) No treatment | 2 × 10 ⁻⁴ | 1.7 × 10 ⁻⁴ | | | (B) "Pre-reduction" | 3×10^{-3} | 2.4×10^{-4} | _ | | (C) Reaction of alkene
with atomic H at liquid
N ₂ temp | | | | | (i) Propene as alkene | 6×10^{-1} | 8×10^{-4} | + | | (ii) Ethene as alkene | 5×10^{-1} | | + | | (D) O ₂ treatment ^c after (C) | 2×10^{-1} | | _ | | N_2O treatment ^d after (C) | 5 × 10 ⁻¹ | | - | | (E) Atomic H-treatment | 3×10^{-3} | | + | | (F) Evaporation of Al | 1×10^{-2} | 1.8×10^{-3} | - | | Evaporation of Mg | 2.5×10^{-3} | | +* | | (G) CH ₂ I ₂ /Al treatment | 3×10^{-1} | 2.6×10^{-2} | | | CH ₂ I ₂ /Mg treatment | 2×10^{-1} | | - | | (H) CH ₂ I ₂ treatment
(without Al and Mg) | 2×10^{-4} | 3×10^{-5} | _ | | (I) CH ₃ I/Al treatment | 3×10^{-2} | | _ | | CH ₃ I/Mg treatment | 6×10^{-3} | | - | | (J) Sn(CH ₃) ₄ treatment | 9×10^{-4} | | _ | ^a Turnover frequencies per surface Mo or W atom. Initial propene pressure, 3 Torr; reaction temp, rt wire (Fig. 1). Then, 1 Torr of He containing 1.5-2.0% of CH_2I_2 was introduced in the reactor at room temperature and maintained for 30 min. The reactor was then evacuated for 10 min at that temperature. The CH₂I₂ (GR, Kanto Chem.) was purified by several freeze-pump-thaw cycles and was mixed with He purified through 3-Å molecular sieves at liquid nitrogen temperature. The catalytic activity of the oxide films for alkene metathesis reaction was evaluated by the formation of ethene and butene when 3 Torr of propene was added at room temperature. That is, the metathesis reaction of propene yielded ethene and but-2-ene, which were quantitatively analyzed by a quadrupole mass spectrometer and a gas chromatograph. The double bond isomeri- zation reaction of but-1-ene and the hydrogen scrambling reaction of C_2H_4 and C_2D_4 were also carried out on the MoO_x films at room temperature. #### RESULTS AND DISCUSSION Synthesis of Active Sites for Metathesis Reaction on MoO_x Film by Reaction of Alkene with Atomic Hydrogen at Liquid N_2 Temperature We found that the reaction of condensed alkenes with atomic hydrogen on MoO_x film yields a highly active alkene metathesis catalyst (3). The alkenes used for the activation of MoO_x films (see Experimental) were almost equally effective for the activation of the MoO_x film. In Table 1-C and Fig. 3 the surfaces activated using ethene and propene are compared. It can be seen that the activity of MoO_x films was about 200 times that of the pre-reduced MoO_x film. In the Ftg. 3. Propene metathesis reaction at room temperature (initial propene pressure, 3 Torr) on various MoO_x films. \bigcirc , Treated with propene and atomic H at liquid N_2 temperature; \bigcirc , treated with ethene and atomic H at liquid N_2 temperature; \triangle , treated with CH_2I_2/AI ; \triangle , treated with CH_2I_2/Mg ; \square , with adjacent AI; \blacksquare , with adjacent Mg; +, "pre-reduced"; \times , with no treatment. ^b Double bond isomerization of *n*-butene measured on the MoO_x films. +, Active; -, inactive. c 0.01 Torr for 1 min at rt. d 1 Torr for 10 min at rt. ^e A cis/trans ~4 in the isomerization of but-1-ene suggests that this activity is caused by MgO. FIG. 4. Reaction of alkene at room temperature (initial, 3 Torr of but-1-ene) on MoO_x film treated with propene and atomic hydrogen at liquid N_2 temp. \bigcirc , Total butene; \bigcirc , but-1-ene; \bigcirc , trans-but-2-ene; \bigcirc , cisbut-2-ene; \triangle , propene; \square , pentene; +, hexene; \times , ethene. case of the MoO_x film activated with propene, the turnover frequency (N = number of C_3H_6 molecules converted/Mo atom second), evaluated by assuming that all the Mo atoms deposited on the glass contribute, is 0.01 s^{-1} . If only the surface Mo at- oms are assumed to be effective, N is estimated to be 0.6 s^{-1} (Table 1-C-i). Consequently, our catalyst is about 100 times more active than a catalyst prepared by anchoring $Mo(\pi - C_3H_5)_4$ with acidic OH groups on Al₂O₃ (5.0 \times 10⁻³ s⁻¹) (4) and about 60 times more active than one of the most active MoO_x/Al₂O₃ catalysts obtained by treatment with $Sn(CH_3)_4$ (1 × 10⁻² s⁻¹) (2). Kazansky and co-workers prepared a very active catalyst ($N = 0.42 \text{ s}^{-1}$) by photoreduction of MoO₃-SiO₂ in CO (5). Our catalyst (N = 0.01-0.6) is comparable to this catalyst in activity. If we repeat the condensation of alkene and the reaction with atomic hydrogen on the same oxide film at liquid N₂ temperature, we obtain even more active catalysts. The MoO_x films activated by alkene and atomic hydrogen were very active also for the isomerization (double bond migration) and hydrogen scrambling reaction of alkenes (Figs. 4 and 5a). However, these catalytic activities are selectively diminished by treatment with a trace amount of oxygen or nitrous oxide (N_2O) at room temperature, as shown in Table 1-D and Figs. 6 and FIG. 5. Effect of O_2 treatment on hydrogen scrambling reaction of ethene (rt, total ethene pressure: 1 Torr) on MoO_x film treated with propene and atomic hydrogen; the reaction on the film before (a) and after (b) O_2 treatment (0.01 Torr, 1 min, room temperature). Fig. 6. Effect of O_2 or N_2O treatment on the metathesis and isomerization reactions of alkene on MoO_x films at room temperature (initial, 3 Torr of propene); production of butene on the film treated with propene and atomic hydrogen without additional treatment (\bigcirc, \bullet) , after O_2 treatment $(\triangle, \blacktriangle)$, after N_2O treatment (\square, \blacksquare) . The production of total butenes (solid symbols and dashed lines) shows the activity for the propene metathesis reaction, and the production of 1-butene (open symbols and solid lines) shows that for the double bond isomerization of the butenes. 5b. This fact suggests that the alkyl intermediates for these reactions are formed by reacting alkenes with hydrogen atoms remaining on the surface (Scheme 1), but they will be removed by the reaction with O_2 or N₂O. In fact, the amount of hydrogen desorbed by heating up to 450°C decreased by $\frac{3}{4}$ after the treatment with O_2 . It was confirmed that the treatment of the MoO_x film only with hydrogen atoms, i.e., without condensed alkenes, did not increase activity for the metathesis reaction, although the activity for the isomerization reaction was markedly enhanced (Fig. 7 and Table 1-Ecompare with Table 1-B). It is noteworthy that the alkyl intermediates for the isomerization do not convert into the alkylidene intermediates for the alkene metathesis reaction. When we used a Ta filament for the dissociation of H₂, we observed the same promoting effects on the isomerization and the isotope scrambling of alkenes. Thus, we can exclude the possibility of catalysis by Mo metal evaporated on the oxide films. Metathesis Isomerization & Hydrogen Exchange SCHEME 1 Fig. 7. Reaction of alkene at room temperature on MoO_x film treated with atomic hydrogen at liquid N_2 temperature. \bigcirc , Total butene; \bigcirc , but-1-ene; \bigcirc , transbut-2-ene; \bigcirc , cis-but-2-ene; \triangle , propene; \square , pentene; (initial, 3 Torr of but-1-ene). Synthesis of Active Sites for Metathesis Reaction on MoO_x Film by Reaction of CH_2I_2 or CH_3I with Al or Mg (6) MoO_x film was markedly activated by treatment with CH_2I_2 when Al or Mg was deposited adjacent to the MoO_x film (Table 1-G and Fig. 3). As shown in Table 1-F, the oxide film was slightly activated by the evaporation of Al or Mg metal. It is difficult to comment on the reasons for this behavior at the present time, but the Al and Mg metals evaporated on the oxide film might reduce the oxide films of Mo or W. On the other hand, treatment of the MoO_x films with CH_2I_2 in the absence of Al or Mg caused no activation, as shown in Table 1-H. Consequently, the remarkable activation shown in Table 1-G is caused by the CH₂ radicals which are generated by reacting CH₂I₂ with Al or Mg (Scheme 2). In fact, a CH₂ radical is detected in the gas phase when CH₂I₂ is condensed on a clean Al plate at liquid nitrogen temperature and is warmed to 170 K (7). In our study, CH_2I_2 was also condensed on the deposited Al at liquid nitrogen temperature and was warmed to room temperature. However, the activity of the oxide surface obtained by this activation procedure was the same as that following treatment at room temperature. After the admission of CH₂I₂, ethene was detected in the gas phase. It may be a product of the coupling reaction of CH₂ radicals formed on Al or Mg. It is noteworthy that the oxide films activated by CH₂I₂/ Al or Mg show no activity for double bond isomerization or for hydrogen scrambling in alkenes. In order to detect alkylidenes on molybdenum oxide film by using the IR spectroscopic method, molybdenum oxide was sublimed on a Si wafer and was treated with CH_2I_2 in the presence of aluminum evaporated on the wall of the glass cell, but no CH_2 could be detected. It should be an interesting question as to whether or not the alkyl species convert to alkylidene intermediates on MoO_x film. The adsorption and/or reaction of alkyl halides on Al and Mg metals has been studied in SCHEME 2 relation to the Grignard reagent, and CH₃I is known to dissociate on a clean Al(111) surface at 150 K, even though CH₃Cl and CH₃Br do not (8). In contrast, CH₃Br produces Br on a Mg(0001) surface at 123 K, but no adsorption of CH3 was observed on the surface (9). Taking account of these facts, CH₃I was reacted with Al or Mg metal vaporized adjacent to the MoO_x film in the same manner as CH₂I₂ reacted with Al or Mg. In the case of CH₃I/Mg, ethane was detected in the gas phase, but in the case of CH₃I/Al no ethane was detected. This fact may indicate that CH₃ radicals are formed on Mg but not on Al. However, no appreciable activation of the MoO_x film for the metathesis reaction was observed for either Al or Mg. It is also an interesting fact that the treatment with CH3I does not enhance the activity for the alkene isomerization reaction (Table 1I). From these results we can conclude that the CH₃ radicals furnished from CH₃I produce neither active Mo=CH₂ sites for the metathesis reaction nor Mo-H sites for the isomerization reaction on MoO_x, although the alkyl radicals formed by reaction of condensed alkenes with atomic hydrogen undergo the synthesis of the active sites for metathesis reaction. Therefore, the activation mechanism of the MoO_x film by reaction of condensed alkenes with atomic hydrogen at liquid N_2 temperature can be explained by the following reactions: $$CH_3$$ — $\dot{C}H_2 + CH_3$ — $\dot{C}H_2 \rightarrow$ $Mo = CH - CH_3 + CH_3 - CH_3$ (1) $$CH_3$$ — $\dot{C}H_2 + H \cdot \rightarrow$ $Mo = CH - CH_3 + H_2$ (2) Since the activities for the metathesis reaction of MoO_x supported on Al_2O_3 , SiO_2 , and TiO_2 are markedly enhanced by treatment with $Sn(CH_3)_4$ (10), we also exposed the MoO_x film to $Sn(CH_3)_4$ (1 Torr of He containing 2% of $Sn(CH_3)_4$ for 30 min at room temperature). As shown in Table 1J, this treatment did not activate the oxide film. This result suggests that the support oxides may play important roles in the decomposition of $Sn(CH_3)_4$ and/or the formation of CH_2 species by reaction with $Sn(CH_3)_4$. Activation of WO_x Film by Reaction of Alkene with Atomic Hydrogen or by a Reaction of CH_2I_2 with Al The two activation reactions were performed on WO_x film: the reaction of condensed alkenes with atomic hydrogen at liquid nitrogen temperature, and the reaction of CH₂I₂ with evaporated Al metal. The results are summarized in Table 1 and Fig. 8. These two reactions markedly activate the MoO_x film as discussed above, but are less efficient for the activation of WO_x film. It was found that the reaction of CH₂I₂ with Al activates the WoO_x film more efficiently than the reaction of propene with atomic hydrogen on the WO_x film. This is opposite from the behavior of the MoO_x film. This fact suggests that the appropriate methods for the synthesis of active alkylidene sites depend on the kind of oxide. The temperature dependence of the propene metathesis reaction was measured at 100° C and at room temperature on the MoO_x and WO_x films activated by treatment FIG. 8. Propene metathesis reaction at room temperature (initial propene pressure, 3 Torr) on various WO_x films. \bigcirc , Treated with CH_2I_2/AI ; \bigcirc , with adjacent AI; \triangle , treated with propene and atomic H at liquid N_2 temperature; \blacktriangle , "pre-reduced." **SCHEME 3** with CH_2I_2/Al . When the reaction temperature was raised from room temperature to $100^{\circ}C$, the reaction rate on the WO_x film increased five times, but that on the MoO_x film did not change appreciably. The temperature dependence of the reaction rate on the WO_x film was reversible; that is, when the temperature was lowered from $100^{\circ}C$ to room temperature, the reaction rate decreased to the initial value. This fact suggests that the temperature enhancement is not caused by an increase in the number of active sites at $100^{\circ}C$ but is caused by the activation energy of the reaction; that is, the metathesis reaction on the WO_x film has FIG. 9. The cis/trans ratio of but-2-ene produced by propene metathesis reaction at room temperature. \bigcirc , WO_x films treated with CH_2I_2/AI ; \triangle , \blacktriangle , MoO_x films treated with CH_2I_2/Mg (\triangle) or with CH_2I_2/Mg (\blacktriangle). an activation energy higher than that on the MoO_x film. The cis/trans ratio of the but-2-ene produced by the propene metathesis reaction on the oxide films activated with CH₂I₂/Al or Mg was about 0.7 at room temperature on both the MoO_x and WO_x films (Fig. 9). The configuration of the metallacyclobutane intermediates (Scheme 3) is responsible for the *cis/trans* ratio, and configuration II is preferred to I (11). It is interesting that the cis/trans ratio was almost the same on the two oxide films, although their activation energies are different. Another noteworthy fact is that the cis/trans ratio is close to 1, which is larger than that on the supported catalyst (<0.2) (12). This fact indicates that the two configurations of metallacyclobutanes (Scheme 3, I and II) contribalmost equally to the reaction regardless of the activation energy; that is, temperature may not appreciably affect the ratio. ## ACKNOWLEDGMENTS The authors are indebted to the Iwatani Naoji Foundation, the Murata Science Foundation, and the Nippon Sheet Glass Foundation for support of this work. ## REFERENCES - Cardin, D. J., and Lappert, M. F., J. Chem. Soc. Chem. Commun., 927, (1972). - 2. Tanaka, K., and Tanaka, K., Surface (Hyomen) 24, 275 (1986). - 3. Kazuta, M., and Tanaka, K., J. Chem. Soc. Chem. Commun., 616 (1987). - 4. Iwasawa, Y., Ichinose, H., and Ogasawara, S., J. Chem. Soc. Faraday Trans. 177, 1763 (1981). - Shelimov, B. N., Elev, I. V., and Kazansky, V. B., J. Catal. 98, 70 (1986). - Kazuta, M., and Tanaka, K., Catal. Lett. 1, 7 (1988). - Domen, K., and Chuang, T. J., J. Amer. Chem. Soc. 109, 5288 (1987). - 8. Chen, J. G., Beebe, T. P., Jr., Crowell, J. E., and - Yates, J. T., Jr., J. Amer. Chem. Soc. 109, 1726 (1987). - Nuzzo, R. G., and Dubois, L. H., J. Amer. Chem. Soc. 108, 2881 (1986). - Tanaka, K., and Tanaka, K., J. Chem. Soc. Chem. Commun., 748 (1984). - Tanaka, K., Tanaka, K., Takeo, H., and Matsumura, C., J. Amer. Chem. Soc. 109, 2422 (1987). - Tanaka, K., Miyahara, K., and Tanaka, K., J. Mol. Catal. 15, 133 (1982).